[1] M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer; 4th edition, 2009
[2] G.L. Alexanderson, L.F. Klosinski, L.C. Larson, The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, The Mathematical Association of America, 1985.
[3] N. Altshiller-Court, College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle, Dover Publications, 2007.
[4] T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL Publishing House, 2002.
[5] T. Andreescu, D. Andrica, Complex Numbers from A to.. Z, Birkhäuser, Boston, 2005.
[6] T. Andreescu, D. Andrica, Z. Feng, 104 umber Theory Problems, Birkhauser, Boston, 2006.
[7] T. Andreescu, V. Cartoaje, G. Dospinescu, M. Lascu, Old and New Inequalities, GIL Publishing House, 2004.
[8] T. Andreescu, Z. Feng, 103 Trigonometry Problems: From the Training of the USA IMO Team, Birkhäuser Boston, 2004.
[9] T. Andreescu, Z. Feng, Mathematical Olympiads 1998-1999, Problems and Solutions from Around the World, The Mathematical Association of America, 2000.
[10] T. Andreescu, Z. Feng, Mathematical Olympiads 1999-2000, Problems and Solutions from Around the World, The Mathematical Association of America, 2002.
[11] T. Andreescu, Z. Feng, Mathematical Olympiads 2000-2001, Problems and Solutions from Around the World, The Mathematical Association of America, 2003.
[12] T. Andreescu, Z. Feng, A Path to Combinatorics for Undergraduates: Counting Strate-
[13] T. Andreescu, R. Gelca, Mathematical Olympiad Challenges, Birkhäuser, Boston, 2000
[14] T.Andreescu, K. Kedlaya, P. Zeitz, Mathematical Contests 1995-1996, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1997
[15] T. Andreescu, K. Kedlaya, Mathematical Contests 1996-1997, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1998.
[16] D.S. Mitrinovi?, J.E. Pe?arié, V. Volenec, Recent Advances in Geometric Inequalities Kluwer Academic Publishers, 1989
[17] P. Mladenovi?, Combinatorics, 3rd edition, Mathematical Socicty of Serbia, Beograd.2001.
[18] P.S. Modenov, Problems in Geometry, MIR, Moscow, 1981.
[19] P.S. Modenov, A.S. Parhomenko, Geomeiric Transformations, Academic Press, New York, 1965.
[20] I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of Numbers. John Wiley and Sons, Inc., 1991.
[21] G. Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton University Press, 2004.
[22] C.R. Pranesachar, Shailesh A. Shirali, B.J. Venkatachala, C.S. Yogananda, Mathematical Challenges from Olympiads, Interline Publishing Pvt. Ltd., Bangalore, 1995.
[23] V.V. Prasolov, Problems of Plane Geometry, Volumes 1 and 2, Nauka, Moscow, 1986.
[24] V.V Prasolov, V.M. Tikhomirov Geometry, Volumes 1 and 2, American Mathematical Society, 2001.
[25] A.S. Posamentier, C.T. Salking, Challenging Problems in Algebra, Dover Books in Mathematics, 1996.
[26] A.S. Posamentier, C.T. Salking, Challenging Problems in Geometry, Dover Books in Mathematics, 1996.
[27] I. Reiman, J. Pataki, A. Stipsitz, International Mathematical Olympiad: 1959-1999, Anthem Press, London, 2002.
[28] I.F. Sharygin, Problerms in Plane Geometry, Imported Pubn, 1988
[29] W. Sierpinski, 250 Problems in Elementary Nunber Theory, American Elsevier Publishing Company, Inc., New York, PWN, Warsaw, 1970.
[30] A.M. Slinko, USSR Mathematical Olympiads 1989-1992, AMT, Canberra, 1998,
[31] C.G. Small, Functional Equations and How to Solve Them, Springer 2006.
[32] Z. Stankova, T. Rike, A Decade of the Berkeley Math Circle, American Mathematical Society, 2008.
[33] R.P. Stanley, Enumerative Combinatorics, Volumes I and 2, Cambridge University Press: New Ed edition, 2001.
[34] J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd edition, Cambridge University Press, 2005.
[35] I. Tomescu, R.A. Melter, Problems in Combinatorics and Graph Theory, John Wiley & Sons, 1985.
[36] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, second edition, Cambridge
[37] University Press, 2001
[38] 1.M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Books in Mathematics, 2004.
[39] A.M. Yaglom, I.M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover Publications, 1987.
[40] LM. Yaglom, Geometric Transformations, Vols. I, II, III, The Mathematical Association of America (MAA), 1962, 1968, 1973.
[41] P. Zeitz, The Art and Craft of Problem Solving, Wiley; International Student edition, 2006.
[42] V. K. Balakrishnan, Combinatorics, Schaum Series, 1995.
[43] W.S. Burnside and A.W. Panton. The Theory of Equations: Vol 1 (13th Bd.) S. Chand and Co. Ltd., New Delhi 1990.
[44] H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited: New Mathematical Library 19, The Mathematical Association of America, New York, 1967.
[45] Dimitri Fomin, Mathematical Circles, University Press, 2005
[46] Y. Krishnamurthy, K. N. Ranganathan, B. J. Venkatachala and C. R. Pranesachar, Challenges and Thrills of Pre-College Mathematics, Wiley Bastern Ltd., New Delhi, 2007.
[47] A. Subramanian and S. Muralidharan, Triangles: Construction and Inequalities, The Association of Mathematics Teachers of India, Chennai, 1992
[48] Richard A. Brualdi, Introductory Combinatorics, Elsevier, North-Holland,Now York, 1977
[49] Arthur Engel, Problem Solving Strategies, Springer, 1999.
[50] J.N.Kapur, Mathematical Olympiad Problems Book I (1991), Books II, II (1992), Books IV, V, VI (1993), Mathematical Sciences Trust Soc., New Delhi.
[51] K. Krishnan, Elementary number Theory, University Press, 2012.
[52] I. F. Sharygin, Problems in Plane Geometry, MIR Publishers, Moscow, 1988
[53] D. O. Shklarsky, N. N. Chentsov and I. M. Yaglom, Selected Problems and Theorems in Elementary Mathematics, MIR Publishers, Moscow, 1979.
[54] A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol.1, Holden Day Ine., San Fransisco, London, Amsterdam, 1964.
[55] B. J. Venatachala, Functional Equations, Prism, 2003.
[56] B. J. Venatachala, Inequalities, Hindustan Book Agency, 2009