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My recent research article, ‘Distance 4 Curves on Closed Surfaces of Arbitrary Genus’, published

in ‘Topology and its Applications’ [7], is a joint work with my doctoral advisor, Dr. Sreekrishna

Palaparthi. Let Sg be an orientable, closed surface of genus g ≥ 2 and let C(Sg) be its associated

curve graph. In [7], we give a method to build pairs of curves at a distance 4 in C(Sg) from pairs

curves at a distance 3 in C(Sg). This collection of curves are the first examples of curves at a distance

4 in C(Sg≥4). As an application, we calculate a quadratic upper bound on the geometric intersection

number of curves at a distance 4 in C(Sg≥4).

Figure 1. Curves at a distance 4 on S4 with intersection number 49.

I have tried to include pictures to aid the understanding of certain mathematical terms. However,

to aid readers irrespective of their expertise, the following is a curated list of books that can be treated

as ‘mathematical dictionaries’ for the purpose of this article. For readers seeking a comprehensive

guide in getting started in the field of topology, I have included a few book recommendations at the

end of this article.
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(i) For point-set topology, Topology: A First Course by James R. Munkres is a classic.

(ii) For a working knowledge on manifolds, one can refer to the initial part of chapter 1 of

Introduction to Smooth Manifolds by John M. Lee.

(iii) Although not necessary for reading this article, one can consult Hyperbolic Geometry by James

W. Anderson for an introduction to hyperbolic geometry.

(iv) For complete details on most of the remaining definitions and theorems, A Primer on Mapping

Class Groups by Benson Farb and Dan Margalit is a cult favourite.

1. Introduction

1.1. Surfaces

By a surface we will consider an orientable, connected, closed 2 dimensional R− manifold. In

particular, a 2 dimensional R− manifold, M , is a second-countable, Hausdorff topological space

such that around every point in M there is an open set that is homeomorphic to R2. Surfaces can

be thought of as nice enough objects stitched from fabric into shapes we encounter on most of our

days. Even if we let our imagination run wild, the following theorem assures us that the shape of a

general topological surface is quite domesticated. The classification of surfaces theorem by Poincaré

states that any surface is homeomorphic to the connected sum of a sphere with g ≥ 0 tori (see

figure 2). The number g is called the genus of the surface. The connected sum of two surfaces, M

and N , is the surface obtained by gluing (M \ unit disc) and (N \ unit disc) about their boundary
circles by a homeomorphism. Throughout this article we will use Sg to denote an arbitrary surface

of genus g ≥ 2. We define a curve, α, on Sg to be an embedding of the unit circle into S such that

α is not null homotopic on Sg. On a lighter note, our curves can be thought of as closed elastic

bands on our stitched fabrics such that the bands can’t be squeezed to a point on our fabric. The

moving of a curve on Sg without breaking or contracting it is called an isotopy. More precisely, an

isotopy between two curves, a and b, on Sg is a continuous function, H : S1× [0, 1] −→ Sg such that

H(S1, 0) = a, H(S1, 1) = b and H(S1, t) is an embedding for every t ∈ [0, 1]. By a slight abuse of

notation we will write α to denote the curve, α, or the isotopy class of α whenever the context is

clear. Pictorially speaking, we will consider any curve and any variation of it obtained by wriggling

it as the same curve. Whenever considering a collection of isotopy classes of curves, it is a standard

practice in this subject to consider minimally intersecting curves as representatives.

1.2. Mapping class groups

For any Sg, its group of orientation preserving homeomorphisms (upto homotopy) is called the

mapping class group of Sg and is denoted by Mod(Sg). A class of interesting infinite order mapping

class in Mod(Sg) is the class of Dehn twists. Max Dehn introduced these maps and called them

‘schraubungen’, which translates to ‘screw map’. Dehn twists in Mod(Sg) can be thought of as

analogous to elementary matrices in linear groups.
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Figure 2. Surfaces with genus 0 (sphere), 1 (torus) and 3.

Consider the annulus, A = S1 × [0, 1], and define T : A −→ A as (θ, r) 7→ (θ + 2πr, r). Let α

be a curve on Sg. Let N be an annular neighbourhood of α and ϕ : A −→ N be an orientation

preserving homeomorphism. Then, the Dehn twist about α, Tα : Sg −→ Sg, is defined as follows

(also, see figure 4)

Tα(x) =

{
ϕ ◦ T ◦ ϕ−1(x) x ∈ N

x x /∈ N

Figure 3. Annular and cylindrical view of the action of T .

The action of Tα on Sg can be interpreted as ‘T acting on N’ and keeping Sg \ N fixed. The

mapping class, Tα, is well-defined upto isotopy for the isotopy class of α.

Figure 4. Dehn twist of the green curve about the blue.
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1.3. Teichmüller spaces

For our purpose we upgrade the topological structure of Sg to a geometrical one by equipping Sg

with a Reimannian metric. From the uniformization theorem it follows that Sg is compatible with

constant −1 curvature metrics. We refer to such a metric on Sg as a hyperbolic metric on Sg. One

way to imagine hyperbolic structures on Sg is to consider the quotient spaces of the hyperbolic plane,

H2, by discrete subgroups of the isometry group of H2 which are isomorphic to the first fundamental

group of Sg. A cartoon picture of such a space might be to imagine a ‘nice’ enough group rolling

up H2 such that the points which are equivalent under the action of this group are folded on top of

one another. The space of marked hyperbolic metrics (upto isotopy) on Sg is called the Teichmüller

space of Sg and is denoted by Teich(Sg). It can be observed that Mod(Sg) acts on Teich(Sg) by

the action of pullback of the hyperbolic metrics on Sg.

1.4. Moduli spaces

An ubiquitous quest in any branch of mathematics is for the classification of objects upto

automorphisms. For a class of geometric objects, A, its space of geometric solutions to the

classification problem is called the moduli space of A. In this article we will restrict our interest

to the moduli space of Riemann surfaces homeomorphic to any given Sg. We denote this moduli

space by M(Sg). We can define the moduli space of hyperbolic surfaces homeomorphic to S as the

quotient space

M(S) = Teich(S)/Mod(S).

Studying the geometric structure on M(Sg) also reveals information about the geometric structures

on Sg. Besides being a fundamental object in various fields ranging from low-dimensional topology,

algebraic geometry to mathematical physics, M(S) plays a vital role in the classification of surface

bundles.

1.5. Curve graphs

With the motive to study the Teichmüller space, in [6] Harvey associated a simplical complex to

Teich(Sg), called the complex of curves. The 1-complex, C(Sg), of the complex of curves is called the

curve graph and is defined as follows: The 0-skeleton, C0(Sg), of C(Sg) is in one-to-one correspondence

with isotopy classes of curves on Sg. Two vertices span an edge in C(Sg) if and only if these vertices

have mutually disjoint representatives.

Define a metric, d, in C(Sg) such that the distance between any two vertices is the minimum

number of edges in any edge path between them in C(Sg). The curve graph of Sg forms a connected

graph ([9]). By the distance between two curves on Sg, we will mean the distance between the

corresponding vertices in C(Sg) with respect to d. We denote the minimal geometric intersection

number between any two curves on Sg which are at a distance n by imin(g, n).
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Q2

Q3

Q4 Q1

Figure 5. Q1, Q2, Q3, Q4 represents vertices in the same order of a length 3 geodesic in C(S2).

The large scale geometry of the curve complex has been employed to understand the hyperbolic

structure of 3-manifolds, the mapping class group and the Teichmuller space of surfaces.

2. Distances in curve graphs

Masur and Minsky proved in [9] that C(Sg) is δ− hyperbolic and is of infinite diameter. Later it has

been proved that δ can be chosen independent of the surface Sg. Although the large scale geometry

of the complex of curves is known, much about its small scale geometry remains obscure.

It can be easily observed that every vertex in C(Sg) has infinitely many adjacent vertices. This

local infinitude of C(Sg) poses as a major pathology in the study of the curve graph as it hinders

the calculation of distances in C(Sg). The authors in [8] circumvented the local infinitude of C(Sg)

by considering a finite set of geodesics, called tight geodesics, between any two vertices. Later the

authors of [3] defined another class of geodesics in C(Sg) called initially efficient geodesics. They

proved that between any two vertices, ν and ω, at a distance n there exist finitely many geodesics

ν0 = ν, ν1, . . . , νn = ω where ν1 can have at most n6g−6 possibilities.

Another hindrance in the study of the curve graph is the obscurity of possible pair of curves on

Sg which represented vertices in C(Sg) that are a distance n apart. Using the bounded geodesic

image theorem from [8], Shackleton have constructed vertices in C(Sg) which are a given distance

apart ([11]). However the intersection number of these pairs of curves can be arbitrarily large and

hence, might be somewhat not nice to study. The authors of [2] give infinite geodesic rays in C(Sg)

such that the intersection number between the vertices of these geodesic rays is bounded above by

a polynomial of the complexity of the surface and thus, is kept asymptotically low.

In [1], the authors provide an upper bound and a lower bound on the number of Mod(Sg)− orbits

of pairs of distance 3 curves on Sg. They further provide an algorithm to build a pair of distance

3 minimally intersecting curves on Sg+2 from a pair of distance 3 minimally intersecting curves on

Sg≥3. Using this the authors show that the theoretical lower bound for imin(g, 3) deduced from
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Figure 6. Curves at a distance 3 in C(S4) used to obtain the pair of distance 4 curves in figure 1.

Euler characteristic considerations is obtained and hence, imin(g, 3) = 2g − 1.

For g ≥ 3, not only pairs of distance 4 curves remain to be elusive but also imin(g, 4) remains

unknown. In [5], the authors prove that imin(2, 4) = 12 by providing all pairs of distance 4 curves

on S2 in a disc with handle presentation. They prove that these curves are at a distance 4 using a

software, called MICC, which runs a distance 4 test algorithm based on the efficient geodesics in [3].

Using the example of a pair of distance 4 curves on S3 provided in [10], it has been deduced that

imin(3, 4) ≤ 21.

3. Distance 4 curves in the curve graph

While trying to figure how C(Sg) looked like locally, the obscurity surrounding the small scale

geometry of C(Sg) motivated Dr. Sreekrishna and me to figure out the nuts and bolts of C(Sg). In

[7], we establish our first step of this venture by providing the first set of infinitely many examples

of pairs of distance 4 curves on Sg≥4. These curves are a result of the following theorem 1.

Theorem 1. If α and γ are a pair of curves on Sg with d(α, γ) = 3 then for p ≥ 1, d(α, T p
γ (α)) = 4.

The proof of theorem 1 can be broken down into three main steps :

Step 1 : We establish a path of length 4 between α and T p
γ (α) by using a geodesic between α

and γ. This gives that d(α, T p
γ (α)) ≤ 4. This brings down our choices for d(α, T p

γ (α)) to either 2, 3

or 4.

Step 2 : As a second step we eliminate the possibility of 2 for d(α, T p
γ (α)). We arrive at this by

proving theorem 2 which is equivalent to saying d(α, T p
γ (α)) ≥ 3. Two curves, a and b, on Sg fill Sg

if and only if d(a, b) ≥ 3 follows from the fact that if d(a, b) = 2 then there is a non-trivial curve in

Sg \ (a ∪ b).

Theorem 2. If α and γ are a pair of curves which fill Sg, then α and T p
γ (α) also fill Sg for p ≥ 1.

The core idea behind the proof of theorem 2 is that no two distinct components of Sg \ (α, γ) get
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glued to form any component of Sg \ (α, T p
γ (α)). Each component of Sg \ (α, γ) disintegrates to give

distinct components of Sg \ (α, T p
γ (α)). This prevents any non-disc components from occurring in

Sg \ (α, T p
γ (α)).

Step 3 : As a final step we use theorem 3 which gives a criterion for detecting vertices in C(Sg)

at distance at-least 4 to establish that d(α, T p
γ (α)) ≥ 4. The core idea executed at this step is that

any minimally intersecting curve at a distance 1 from T p
γ (α) ‘takes the form of γ’ while traversing

on Sg. This makes such curves ‘mimic’ the property that γ fills Sg along with α.

Theorem 3 (Theorem 1.3, [5]). Let v, w be vertices in C(Sg) with d(v, w) ≥ 3. Let Γ ⊂ C0(Sg) be

the collection of all vertices such that the following hold :

(i) for γ ∈ Γ, we have d(v, γ) = 1; and

(ii) for γ ∈ Γ; there exists representatives α, β, γ of v, w, γ respectively, such that for each segment

b ⊂ β \ α we have |γ ∩ b| ≤ 1.

Then d(v, w) ≥ 4 if and only if d(γ,w) ≥ 3 for all γ ∈ Γ.

Thus we conclude the outline of the proof of theorem 1.

Let the geometric intersection number between two curves, a and b, on Sg be denoted by i(a, b).

Using theorem 1, we calculate an upper bound for imin(g, 4). The proof of corollary 1 follows from

the following two results : imin(g, 3) = (2g − 1) and i(α, T p
γ (α)) = |p|i(α, γ)2.

Corollary 1. For a surface of genus g ≥ 3, imin(g, 4) ≤ (2g − 1)2.

4. Research directions

The area of mapping class group of surfaces is a vibrant and fertile research area currently. With a

rich history and promising future, research in Mod(Sg) is not only popular among low-dimensional

geometers and topologists but many algebraists and number theorists take an active interest as well.

The book, Problems on Mapping Class Groups and Related Topics, by Benson Farb is an excellent

starting point to get introduced to various research topics in the field of Mod(Sg). The book also

contains many open questions. An online version of the pdf is available for free (see [4]).

References

[1] Tarik Aougab and Shinnyih Huang. Minimally intersecting filling pairs on surfaces. Algebr. Geom. Topol.,

15(2):903–932, 2015.

[2] Tarik Aougab and Samuel J. Taylor. Small intersection numbers in the curve graph. Bull. Lond. Math. Soc.,

46(5):989–1002, 2014.

[3] Joan Birman, Dan Margalit, and William Menasco. Efficient geodesics and an effective algorithm for distance in

the complex of curves. Math. Ann., 366(3-4):1253–1279, 2016.

41
Ganit Bikash | Volume 74 | July – September, 2022



Article

[4] Benson Farb. Problems on mapping class groups and related topics.

[5] Paul Glenn, William W. Menasco, Kayla Morrell, and Matthew J. Morse. MICC: a tool for computing short

distances in the curve complex. J. Symbolic Comput., 78:115–132, 2017.

[6] W. J. Harvey. Boundary structure of the modular group. In Riemann surfaces and related topics: Proceedings

of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of

Math. Stud., pages 245–251. Princeton Univ. Press, Princeton, N.J., 1981.

[7] Kuwari Mahanta and Sreekrishna Palaparthi. Distance 4 curves on closed surfaces of arbitrary genus. Topology

Appl., 314:Paper No. 108137, 2022.

[8] H. A. Masur and Y. N. Minsky. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct.

Anal., 10(4):902–974, 2000.

[9] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math.,

138(1):103–149, 1999.

[10] Euan McGonigle. Distance in the complex of curves. Master’s thesis, School of Mathematics and Statistics,

University of Glasgow, 2016.

[11] Kenneth J. Shackleton. Tightness and computing distances in the curve complex. Geom. Dedicata, 160:243–259,

2012.

5. Book recommendations

The following is a list of books that I referred to through my journey into learning and re-learning

topology and its related areas. I have tried to arrange the list in what I feel is an increasing level

of difficulty. Lastly, I would like to convey to the reader that learning is a personal ongoing process

and the list below is highly incomplete.

(i) Algebraic Topology

• Topology of Metric Spaces by S. Kumaresan

• Basic Topology by M.A. Armstrong

• Elements of Algebraic Topology by James Munkres

• Homology Theory: An Introduction to Algebraic Topology by James W. Vick

• Algebraic Topology by Allen Hatcher

(ii) Differential Topology

• Differential Geometry of Curves and Surfaces by Manfredo Perdigão do Carmo

• Geometry from a Differentiable Viewpoint by John McCleary

• First Steps in Differential Geometry: Riemannian, Contact, Symplectic by Andrew

McInerney

• Calculus on Manifolds by Michael Spivak

• A Comprehensive Introduction to Differential Geometry (Vol. 1) by Michael Spivak

For comments and queries, one can write to me at kuwari.mahanta@gmail.com.
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